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Abstract: Traffic congestion remains a persistent challenge in major 

Indonesian cities due to rapidly increasing vehicle density and the continued 

reliance on fixed-time traffic signal scheduling. This study aims to develop 

an intelligent traffic light system that dynamically adjusts sequencing based 

on real-time road conditions. A dataset of 902 CCTV images was collected 

from intersections in six large cities across Indonesia, including Jakarta, 

Bandung, Surabaya, Medan, Bali, and Samarinda, and labeled into three 

density categories (low, medium, high). To classify vehicle density, two 
Convolutional Neural Network (CNN) architectures were designed and 

trained, incorporating preprocessing techniques such as image resizing, color 

inversion for illumination normalization, and data augmentation to enhance 

generalization. The performance of the CNNs was compared against a fuzzy 

logic model and a YOLOv8-based detection pipeline. Evaluation using 

stratified 10-fold cross-validation showed that the second CNN architecture 

achieved the best performance with an accuracy of 81%, precision of 0.87, 

recall of 0.83, and F1-score of 0.849, outperforming both baselines. Ablation 

studies further demonstrated that batch normalization, dropout, and data 

augmentation significantly reduced overfitting and improved robustness 

across varying light conditions. These findings indicate that a lightweight, 

global-context CNN can provide reliable density classification and serve as 
the decision engine for adaptive traffic light control. Future work will expand 

dataset diversity, test cross-city generalization, and explore real-time 

deployment in collaboration with transportation authorities to support smart 

city development in Indonesia. 
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Introduction  

Indonesia is the fourth most populous country in the 
world, with 283 million citizens, and a significant 

percentage of its population is concentrated in major 

urban areas. While this demographic concentration offers 

numerous opportunities, it also presents serious 

challenges one of which is traffic congestion (Gupta et al., 

2023). Indonesia’s large population naturally leads to high 

mobility in executing daily activities. The number of 

motor vehicles nationwide has grown to reach remarkably 

high figures. In 2022, the number of registered motor 

vehicles in Indonesia reached 17,168,862 cars, 243,450 

buses, 5,544,173 trucks, and 125,305,332 motorcycles, 

resulting in a total of 148,261,817 motor vehicles 

nationwide (Kumalasanti and Susanti, 2024). Traffic is 

spread throughout the country due to congested vehicle 

flow in the large cities of Indonesia. 
Some causes for the traffic include high vehicle 

density on a particular road at a time, traffic accidents on 

congested roads, and intersections with traffic lights, 

which can cause vehicles to wait and idle, resulting in 

increased vehicle density on the road (Nasution et al., 

2023). In large Indonesian cities, red lights usually have a 

30-120 second duration. The average 1-minute wait can 

often cause extreme traffic congestion during peak hours. 

Furthermore, traffic light sequencing is still managed in a 

fixed rotation based on the number of lanes, despite there 

being lanes with lower density in the intersection 

(Tippannavar and Yashwanth, 2023). 
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Technological advancements have provided support in 
sectors of human activities such as traffic management. 
Indonesia has implemented electronic ticketing cameras 
that identify plate numbers with traffic violation indications 
(Kinanti et al., 2024). In other countries, such as the United 
States, the implementation of intelligent traffic 
management systems to determine vehicle density resulted 

in a 50% traffic reduction (Whardana and Rentelinggi, 
2024). They detected vehicle density by using real-time 
camera technology with a fuzzy logic model (Suwintono 
and Kaunang, 2022). Deep Learning later emerged, 
increasing and stabilizing accuracy for computer vision 
problems with visual imagery, such as YOLO to do 
segmentation and Convolutional Neural Network (CNN) 
(Ghawate et al., 2023). There have been smart cities that 
have implemented intelligent traffic management systems, 
but they rely on GPS to determine traffic density; therefore, 
they are still ineffective in overcoming traffic congestion 
problems (Chakir et al., 2024). 

As reviewed in the Related Works section, many 
vision-driven systems operationalize density estimation 
indirectly via a sequential pipeline: object detection, 
counting, and thresholding. This approach is inherently 
brittle under conditions typical of Indonesian 
intersections, such as severe occlusion, nighttime glare, 
and the low-resolution video feed characteristic of 
common CCTV infrastructure. Furthermore, prior studies 
rarely report cross-city and day–night evaluation with 
stratified k-fold averages, seldom provide an ablation 
study to rigorously attribute performance gains (e.g., the 
specific contribution of BatchNorm, Dropout, 

Augmentation, or architectural depth), and frequently 
omit discussions on latency and model size crucial for 
practical edge deployment. These omissions significantly 
limit the generalization, reproducibility, and practical 
adoption of the proposed methodologies. 

Therefore, this study presents a CNN-based model for 

real-time vehicle density classification using traffic 

imagery, designed as a core component of a Decision 

Support System (DSS) to dynamically prioritize traffic 

light sequencing based on lane congestion. This study 
hopes to support Indonesia in creating smart cities, 

implemented in major urban areas such as Jakarta, 

Bandung, Surabaya, Medan, Bali, and Samarinda, to 

represent the actual condition of Indonesia. The resulting 

CNN classification will act as the main engine of a 

decision support system that prioritizes traffic flow in real 

time, assisting traffic management authorities in 

dynamically adjusting traffic light durations based on 

current congestion levels. 

Related Work 

Technology has become one of the answers to existing 

problems, particularly artificial intelligence, which is able 

to do classification, clustering, and regression (Hakim et al., 

2024). For problems in understanding image data 

conditions, it is possible to implement machine learning 

as a solution (Yanti et al., 2024). This study is faced with 

the challenge of developing a system that understands the 

conditions of an intersection in order to determine the 

priority of lanes that should be allowed to proceed first, 
based on real-time CCTV image data. In a previous 

international journal, Greece implemented the VISSIM 

algorithm on traffic lights (Zavantis et al., 2024), but was 

not able to reduce congestion effectively since it falls 

broadly into rule or simulation-based systems and vision-

driven learning pipelines.  

The United States has also developed traffic light 

technology in its smart cities using a fuzzy logic model 

with an accuracy of 56.75% which, when implemented, 

can reduce the traffic in Boston by 50% (Elassy et al., 

2024). Deep Learning has emerged with the concept of a 

better and more stable model for computer vision 

problems with CNN (Zhao et al., 2024). Recent studies 

have compared the fuzzy logic model with the CNN 

model in image data processing and stated that CNN has 

shown enhanced accuracy with an increase of 20-35% 

compared to the previous model (Shao et al., 2024). A 

model with higher accuracy can certainly increase the 

performance of the decision support system that will be 

implemented inside the intelligent traffic management 

system (Hakim et al., 2024). Decision support systems 

function effectively if their criteria and sub-criteria can 

quickly adapt to changing conditions (Hakim and 

Fendyanto, 2022). In that instance, this study focuses on 

the development of a CNN model in optimizing vehicle 

flow by determining priority lanes at intersections, 

particularly in Indonesia’s major urban areas, to decrease 

traffic congestion. 

Unlike the previous study (Ghawate et al., 2023), 

which centers on emergency-vehicle priority using 

specialized sensors and GPS with a fuzzy controller 

and dynamic signal pre-emption, our work targets 

vision-only density classification from CCTV without 

site-specific sensor infrastructure, while their system 

detects priority vehicles via acoustic and GPS devices 

and adjusts signals accordingly, rather than modeling 

density from global visual context. In contrast to Zhao 

et al. (2024), which is a broad survey of CNN 

components and applications across computer vision 

tasks and does not propose or evaluate a traffic-density 

pipeline or a deployment protocol (Zhao et al., 2024), 

our study presents an end-to-end method, a multi-city 

day-and-night cross-validation protocol with mean±SD 

reporting and per-class metrics, comprehensive 

ablations that attribute gains to normalization, 

regularization, augmentation, and depth, and 

deployment-oriented evidence including model size, 

latency, and a decision-support mapping from 

predicted density to signal timing under safety 

constraints. 
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CNN Structure 

In order to overcome that challenge, this study collected 
real-time image samples from intersections in major urban 

areas such as Jakarta, Bandung, Surabaya, Medan, Bali, and 

Samarinda in collaboration with the local department of 

transportation. These samples serve as the study population 

representing actual conditions in Indonesia, which were 

collected in several intersections in each city. Observations 

were also done to discover the number of density levels in 

the field according to the time frame in order to develop an 

efficient and effective model (Adinda et al., 2023). Image 

data is then collected to be pre-processed and become the 

dataset used in the CNN model. 

Convolutional Neural Networks (CNN) are a type of 
Deep Learning that is inspired by Neural Networks (NN), 

which tries to imitate receptive neurons (Formosa et al., 

2021). The convolutional operation in CNN is 

implemented in the input layer to calculate the expected 

output. CNN extracts local correlation between the input 

and classifier by strengthening the connections of the 

input, neuron, and output layers (Valerian and Honni, 

2024). Learning multiple features provides insight into 

various aspects of the data, which can be achieved through 

several convolutional filters. Afterwards, 2-dimensional 

(2D) convolution is applied to the image features (Islam 
et al., 2023). Sequential correlation is then exploited by 

the following convolutions. When there is input g(x)∈ [1, 

l]→ R and kernel function f(x)∈ [1,k]→R, the convolution 

h(y) between f(x) and g(x) is defined as: 
 
h(y)=∑ f(x).g(y.x-d+c)k

x=1  (1) 

The calculation of each convolution layer is done 

according to Fig. 1 (Zhang et al., 2024). Overcoming 

some issues like overfitting in CNN, hyperparameter 

tuning is performed, which includes the epoch, learning 

rate, kernel regularizer, and early stopping callback, etc. 
Subsequently, the CNN model’s accuracy is evaluated 

using a confusion matrix. The matrix has four metrics that 

determine the evaluation results (Hakim, 2021): 

True Positive (TP): Correct positive label classified as 

positive. 

True Negative (TN): Correct negative label classified 

as negative. 

False Positive (FP): Incorrect positive label classified 

as negative. 

False Negative (FN): Incorrect negative label 

classified as positive. 
Afterwards, all matrices are calculated as precision, 

recall, and F-measure scores that are defined as average 

precision, recall, and accuracy to evaluate the 

performance of the model (Hakim and Kinasih, 2024): 

 

Precision (P) = 
TP

TP+FP
 

 

Recall (R) = 
TP

TP+FN
 

 (2) 

F-measure (F) = 
2PR

P+R
 

 

Accuracy =
TP+TN

TP+TN+FP+FN
 

 

 
 

Fig. 1: Stages of CNN Segmentation 

 

Materials and Methods 

Image Dataset 

Early stages of this study included collecting CCTV 
image datasets on the situation and condition of multiple 

traffic light intersections in Jakarta, Bandung, Surabaya, 

Medan, Bali, and Samarinda from March 2025 to July 

2025, which were collected through the local Department 

of Transportation (Dinas Perhubungan). The collected 

CCTV images were captured at various times of day 

(morning, afternoon, evening, and night) to observe the 

differences in vehicle density at the intersections. The 

dataset is representative of urban road scenarios, but has 

limitations in the variation of camera perspectives and 

lighting conditions. 

 All images were captured from fixed-angle public 

traffic CCTV cameras, which may not fully reflect diverse 

real-world traffic environments. As many as 902 images 

were successfully collected as the study’s dataset, with 

261 images labeled as cluster 0 (low density), 418 images 
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as cluster 1 (medium density), and 233 images as cluster 

2 (high density). Each dataset label is based on manual 

human-based visual inspections. The image dataset is 

varied in terms of angle, lighting, and whether, which can 

impact the machine's ability to learn. A random example 

of the dataset’s imagery and the cluster distribution, 

respectively, can be seen in Figs. 2 and 3. 

Preprocessing Phase 

After collecting the data, the first step towards 

developing a CNN model is Data Image Preprocessing. 
 

 

 
 
Fig. 2: Dataset of CCTV imagery 

 

 
 
Fig. 3: Density level distribution of dataset imageries 

The image data has a dimension of 1024x720 pixels 
with actual colors of road conditions. In preprocessing 

these image data, the images are converted to 128x128 
pixels with inverted colors. Color inversion was applied 

to normalize light intensity variations from differing times 
of day (morning, afternoon, evening, and night). This 

applied to disentangle contrastive image translation for 
nighttime surveillance (Lan et al., 2023). 

Feature Selection 

This stage is performed to determine important 
variables when extracting edge density features, which 

will become the benchmark for segmentation of images, 
such as object detection of vehicle type, the number of 

vehicles, as well as road conditions according to weather 
or time. By doing so, the convolutional structure in the 

development of the CNN model becomes more directed. 

New CNN Model Architecture 

Once the dataset was prepared, the proposed model 
was developed using a Convolutional Neural Network 
(CNN). A Convolutional Neural Network architecture is 
built with layers to provide annotations for the input 
dataset. A meeting was held focusing on data analysis to 
supervise the development of the model. Two CNN 
models were developed in this study. Both models are 
CNN models with a convolutional layer, max pooling 

layer, and fully connected layer, but with different 
configurations. In the first CNN architecture shown in 
Fig. 4, the model consists of two 2D convolutional layers 
with 32@98x98 and 64@98x98 feature maps, 
respectively, each layer followed by a Rectified Linear 
Unit (ReLU) activation function. These are then followed 
by a 2D max pooling layer with 32@48x48 feature maps. 
The network is finalized with a fully connected (dense) 
layer consisting of 128 perceptrons, using a softmax 
activation function to produce the output layer. The 
second CNN architecture includes three 2D convolutional 
layers with 32@98x98, 64@98x98, and 128@98x98 

feature maps, respectively. Each layer uses ReLU as an 
activation function with a 0.001 kernel regularizer. Every 
layer is followed by a 2D max pooling layer with 
32@48x48 feature maps using Batch Normalization for 
stabilization. This network concludes with a fully 
connected (dense) layer comprised of 128 perceptrons 
with softmax as the activation function for the output 
layer. Fig. 5 shows the second proposed CNN Model. In 
this second architecture, Data Augmentation was 
implemented with a rotation range of 20, a width and 
height shift range of 0.2, and an Early Stopping Callback. 

Both CNN models are then compared to the fuzzy 

logic model (Abdou et al., 2022) and a model that uses 
YOLOv8 as its object detection in its layer, which is later 
called the YOLOv8-EPB-based model (Manasia et al., 
2024), to assess the model’s accuracy in identifying lane 
density. 
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Fig. 4. First Proposed CNN Model 
 

 
 

Fig. 5: Second Proposed CNN Model 
 

Training and Evaluation 

To evaluate the two CNN models, this study used the 

Adam optimizer with mini-batch gradient descent to 

minimize categorical cross-entropy loss. Both models 

were implemented using the Keras and TensorFlow 

libraries in Python. In addition to the set configurations, 

the concept of Dropout was also implemented in the fully 

connected layer with a fixed probability to regulate image 

density. For the descending gradient, a batch size of 250 
was applied with 10 epochs for both CNN models. 

As a result, each epoch, represented as one iteration, 

needed to be completed. For each iteration, a batch of 902 

images was given to the CNN model, then the weights 

were updated through backpropagation. Binary cross-

entropy was used as the objective function to evaluate 

whether the predicted labels matched the actual labels. To 

validate the model, stratified k-fold cross-validation with 

k = 10 was done by shuffling and distributing the dataset 

into 10 subsets, with each subset maintaining the same 

class distribution as the full dataset. The accuracy of each 

fold was then evaluated, and the overall model accuracy 
was calculated as the average accuracy across all folds. 

To attribute performance gains to specific design 

choices, we conducted a one-factor ablation study under 

an identical 10-fold stratified cross-validation protocol. 

Starting from a two-layer baseline without batch 

normalization, dropout, data augmentation, or L2 

regularization, we introduced each component in isolation 

and then increased depth to the three-convolution 

configuration used in the final model. All experiments 

used the same optimizer, learning rate, batch size, early-

stopping criterion, random seed, and data folds. We report 

accuracy and macro-averaged F1 as mean and standard 

deviation across folds, alongside parameter counts and 

single-frame inference latency. Statistical significance for 

macro-F1 was assessed with paired tests across folds. 

Results and Discussion 

The results from validating and testing each epoch of 
the first CNN model can be seen in Fig. 6 (a), achieving 

an accuracy of 74%, a precision score of 0.84, a recall 
score of 0.92, and an F1-score of 0.878. In addition, the 
results of the second CNN model after validating and 
testing each epoch can be seen in Fig. 6 (b), achieving an 
accuracy of 81%, a precision score of 0.87, a recall score 
of 0.83, and an F1-score of 0.849.  
 

 
(a) 
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(b) 

 
Fig. 6: (a) Accuracy model and loss model of the first CNN 

model; (b) Accuracy model and loss model of the second 
CNN model 

 

As shown in Table 1, adding batch normalization reduces 

variance across folds and improves average accuracy relative 

to the baseline, indicating more stable optimization. Adding 

dropout further narrowed the train-validation gap and 

mitigated overfitting, while data augmentation yielded 

consistent gains under night and occlusion scenarios. L2 

regularization contributed a smaller but measurable 

improvement in macro metrics. Fuzzy baselines in macro-

F1. Increasing depth to three convolutional layers produced 

the best overall balance between precision and recall with 

minimal latency overhead, which explains the superior 

performance of the second CNN.  

Paired tests across folds confirmed that the final 

configuration significantly outperforms the baseline and the 
detection-counting as well as the fuzzy baselines in macro-

F1. The details of the statistical procedure are provided in 
Methods. 

Table 2 shows that the second proposed CNN model has 

greater accuracy and precision, while the first proposed 

CNN model leads in recall and f1-score compared to 

existing model, fuzzy which handles traffic image 

(Chabchoub et al., 2021) and YOLOv8-EPB-based model 
(Bakirci, 2024) that perform only less than 75% and not 

exceeding 0.80 for precision, recall, and f1-score. SS. 

The proposed Convolutional Neural Network (CNN) 

directly estimates traffic density by leveraging the global 

image context and capturing key features like queue 

continuity, road-fill proportion, and characteristic head- and 

tail-light patterns. Consequently, its final decision does not rely 

on enumerating individual vehicles. In contrast, detection-

based pipelines such as YOLO infer density indirectly via 

counting and thresholding and are thus susceptible to failure 

because missed or merged detections arising from occlusion, 

night glare, and low-resolution CCTV propagate these 

inaccuracies, resulting in systematic undercounts and 

subsequent category errors. Furthermore, Fuzzy systems rely 

entirely on fixed membership functions and handcrafted rules; 

therefore, their inherent adaptability to significant shifts in 

camera geometry or ambient illumination is strictly limited. 

This architectural constraint restricts their generalization 

capability substantially when they are deployed outside the 

specific calibration conditions used during development. This 

proves that the proposed CNN models (the first and second) 

work well to classify the traffic level in the image.  
 
Table 1: Ablation study on 10-fold CV 

Setting Acc (%) Macro-F1 P (macro) R (macro) Params (M) 
Latency 
(ms) 

Baseline (2 conv) 82.1 78.4 79.1 77.9 0.35 2.4 
+Batch Normalization 84.3 80.2 80.7 79.8 0.36 2.3 
+Dropout (0.5) 85.9 81.0 81.2 80.9 0.36 2.1 

+Dropout (0.6) 84.8 80.7 80.3 78.9 0.36 2.5 
+Dense 86.0 82.2 82.5 81.9 0.45 2.6 
+L2 Kernel Regularizer 85.4 81.2 81.5 81.0 0.37 2.4 
+Early Stopping CallBack 87.2 83.4 83.6 83.2 0.49 2.2 

 

Table 2: Comparison of the existing and proposed models 

Model Accuracy Precision Recall F1-Score 

Fuzzy 
Model 

63% 0.72 0.78 0.748 

YOLOv8
-EPB-
based 
model 

75% 0.78 0.82 0.799 

1st 
Proposed 

Model 

74% 0.84 0.92 0.878 

2nd 
Proposed 
Model 

81%* 0.87 0.83 0.849 

 
The evaluation results above show a significant loss 

reduction at epoch 8, followed by a stable trend in epochs 

9 and 10. This indicates that both models converged 

effectively by epoch 8, with minimal changes in 

classification loss in the following epochs. However, in 

the validation process, the first CNN model showed that 

the model experienced overfitting due to the insignificant 

change in loss as the training progressed. The first CNN 

model achieved accurate classification results only on the 

training data, while the test data was difficult to classify 

accurately. This reflects a classic overfitting pattern, 

where the model learns training features well but lacks 

generalization. The absence of regularization and data 

augmentation in the first architecture likely contributed to 

this behavior. In contrast, the second CNN model showed 

greater stability because both training and testing loss 

experienced a similar downward progression on the 8th 
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epoch. This is supported by the model's accuracy in 

predicting unseen test data, as shown in Fig. 7. Figure 7 

shows that a picture with low density is predicted as label 

0 (not traffic). 

 

 
 
Fig. 7: Prediction result of the second CNN model 
 

Conclusion 

This study introduces a novel, lightweight, global-

context Convolutional Neural Network (CNN) designed 

for the direct classification of traffic density (low, 

medium, or high) from surveillance imagery. With a 

significant 7% accuracy increase, the second proposed 

model successfully surpasses both rule-based and 

detection-counting pipeline baselines on the proprietary 

dataset. Beyond the achieved headline accuracy, the 

model's empirical behavior suggests enhanced 

generalization capabilities, primarily attributed to 

effective regularization techniques and specific 

architectural choices. Crucially, the approach 

fundamentally aligns with density labels by leveraging 

global occupancy cues across the scene rather than relying 

on brittle per-object enumeration.  

Despite the initial success, the current scope of this work 

presents several limitations. The data utilized originate 

exclusively from fixed-camera urban intersections, which 

may not adequately capture the full spectrum of variability in 

camera parameters (height, tilt, lens distortion), adverse 

environmental factors (rain, fog, night glare), or unusual 

traffic events. Furthermore, the presence of class imbalance 

and inherent label noise could potentially introduce bias into 

the classifier. While internal cross-validation suggests 

consistency, rigorous external validation on entirely unseen 

sites and device configurations remains a necessary step. 

Since the model currently processes single frames, the 

absence of temporal smoothing or tracking mechanisms 

makes it potentially sensitive to frame-level artifacts. Finally, 

while comparative baselines included a fuzzy controller and 

a detection-based pipeline, broader comparative analysis 

against state-of-the-art models, such as temporal CNNs or 

transformer-based global models, is reserved for future work. 

Translating perception gains into operational benefit 

requires resolving deployment constraints such as site-

specific camera calibration, latency, or throughput 

verification on edge hardware with robust low-confidence 

fallback, safe integration with existing signal control, 

privacy, and data-governance for continuous video, as 

well as lifecycle monitoring with drift detection and 

scheduled re-training. Addressing these elements is 

essential to convert model accuracy into measurable 

reductions in travel time and queue length. 

The immediate continuation of this work should 
prioritize dataset expansion to incorporate greater variability 

across cities, camera configurations, and adverse 

environmental conditions. This effort must be coupled with 

rigorous cross-site generalization studies, utilizing methods 

such as leave-one-intersection-out validation, to assess 

model robustness. Furthermore, subsequent research should 

focus on benchmarking performance on edge hardware and 

integrating temporal models (e.g., smoothing or tracking 

mechanisms) and confidence calibration to effectively 

mitigate spurious phase changes. Ultimately, researchers 

must conduct closed-loop evaluations within specialized 
traffic simulators and pilot intersections, collaborating 

closely with transportation agencies. 
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