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Abstract: Traffic congestion remains a persistent challenge in major
Indonesian cities due to rapidly increasing vehicle density and the continued
reliance on fixed-time traffic signal scheduling. This study aims to develop
an intelligent traffic light system that dynamically adjusts sequencing based
on real-time road conditions. A dataset of 902 CCTV images was collected
from intersections in six large cities across Indonesia, including Jakarta,
Bandung, Surabaya, Medan, Bali, and Samarinda, and labeled into three
density categories (low, medium, high). To classify vehicle density, two
Convolutional Neural Network (CNN) architectures were designed and
trained, incorporating preprocessing techniques such as image resizing, color
inversion for illumination normalization, and data augmentation to enhance
generalization. The performance of the CNNs was compared against a fuzzy
logic model and a YOLOvV8-based detection pipeline. Evaluation using
stratified 10-fold cross-validation showed that the second CNN architecture
achieved the best performance with an accuracy of 81%, precision of 0.87,
recall of 0.83, and F1-score of 0.849, outperforming both baselines. Ablation
studies further demonstrated that batch normalization, dropout, and data
augmentation significantly reduced overfitting and improved robustness
across varying light conditions. These findings indicate that a lightweight,
global-context CNN can provide reliable density classification and serve as
the decision engine for adaptive traffic light control. Future work will expand
dataset diversity, test cross-city generalization, and explore real-time
deployment in collaboration with transportation authorities to support smart
city development in Indonesia.
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nationwide (Kumalasanti and Susanti, 2024). Traffic is
spread throughout the country due to congested vehicle
flow in the large cities of Indonesia.

Introduction

Indonesia is the fourth most populous country in the

world, with 283 million citizens, and a significant
percentage of its population is concentrated in major
urban areas. While this demographic concentration offers
numerous opportunities, it also presents serious
challenges one of which is traffic congestion (Gupta et al.,
2023). Indonesia’s large population naturally leads to high
mobility in executing daily activities. The number of
motor vehicles nationwide has grown to reach remarkably
high figures. In 2022, the number of registered motor
vehicles in Indonesia reached 17,168,862 cars, 243,450
buses, 5,544,173 trucks, and 125,305,332 motorcycles,
resulting in a total of 148,261,817 motor vehicles
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Some causes for the traffic include high wvehicle
density on a particular road at a time, traffic accidents on
congested roads, and intersections with traffic lights,
which can cause vehicles to wait and idle, resulting in
increased vehicle density on the road (Nasution et al.,
2023). In large Indonesian cities, red lights usually have a
30-120 second duration. The average 1-minute wait can
often cause extreme traffic congestion during peak hours.
Furthermore, traffic light sequencing is still managed in a
fixed rotation based on the number of lanes, despite there
being lanes with lower density in the intersection
(Tippannavar and Yashwanth, 2023).
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article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.
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Technological advancements have provided support in
sectors of human activities such as traffic management.
Indonesia has implemented electronic ticketing cameras
that identify plate numbers with traffic violation indications
(Kinanti et al., 2024). In other countries, such as the United
States, the implementation of intelligent traffic
management systems to determine vehicle density resulted
in a 50% traffic reduction (Whardana and Rentelinggi,
2024). They detected vehicle density by using real-time
camera technology with a fuzzy logic model (Suwintono
and Kaunang, 2022). Deep Learning later emerged,
increasing and stabilizing accuracy for computer vision
problems with visual imagery, such as YOLO to do
segmentation and Convolutional Neural Network (CNN)
(Ghawate et al., 2023). There have been smart cities that
have implemented intelligent traffic management systems,
but they rely on GPS to determine traffic density; therefore,
they are still ineffective in overcoming traffic congestion
problems (Chakir et al., 2024).

As reviewed in the Related Works section, many
vision-driven systems operationalize density estimation
indirectly via a sequential pipeline: object detection,
counting, and thresholding. This approach is inherently
brittle  under conditions typical of Indonesian
intersections, such as severe occlusion, nighttime glare,
and the low-resolution video feed characteristic of
common CCTV infrastructure. Furthermore, prior studies
rarely report cross-city and day-night evaluation with
stratified k-fold averages, seldom provide an ablation
study to rigorously attribute performance gains (e.g., the
specific  contribution of BatchNorm, Dropout,
Augmentation, or architectural depth), and frequently
omit discussions on latency and model size crucial for
practical edge deployment. These omissions significantly
limit the generalization, reproducibility, and practical
adoption of the proposed methodologies.

Therefore, this study presents a CNN-based model for
real-time vehicle density classification using traffic
imagery, designed as a core component of a Decision
Support System (DSS) to dynamically prioritize traffic
light sequencing based on lane congestion. This study
hopes to support Indonesia in creating smart cities,
implemented in major urban areas such as Jakarta,
Bandung, Surabaya, Medan, Bali, and Samarinda, to
represent the actual condition of Indonesia. The resulting
CNN classification will act as the main engine of a
decision support system that prioritizes traffic flow in real
time, assisting traffic management authorities in
dynamically adjusting traffic light durations based on
current congestion levels.

Related Work

Technology has become one of the answers to existing
problems, particularly artificial intelligence, which is able
to do classification, clustering, and regression (Hakim et al.,
2024). For problems in understanding image data
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conditions, it is possible to implement machine learning
as a solution (Yanti et al., 2024). This study is faced with
the challenge of developing a system that understands the
conditions of an intersection in order to determine the
priority of lanes that should be allowed to proceed first,
based on real-time CCTV image data. In a previous
international journal, Greece implemented the VISSIM
algorithm on traffic lights (Zavantis et al., 2024), but was
not able to reduce congestion effectively since it falls
broadly into rule or simulation-based systems and vision-
driven learning pipelines.

The United States has also developed traffic light
technology in its smart cities using a fuzzy logic model
with an accuracy of 56.75% which, when implemented,
can reduce the traffic in Boston by 50% (Elassy et al.,
2024). Deep Learning has emerged with the concept of a
better and more stable model for computer vision
problems with CNN (Zhao et al., 2024). Recent studies
have compared the fuzzy logic model with the CNN
model in image data processing and stated that CNN has
shown enhanced accuracy with an increase of 20-35%
compared to the previous model (Shao et al., 2024). A
model with higher accuracy can certainly increase the
performance of the decision support system that will be
implemented inside the intelligent traffic management
system (Hakim et al., 2024). Decision support systems
function effectively if their criteria and sub-criteria can
quickly adapt to changing conditions (Hakim and
Fendyanto, 2022). In that instance, this study focuses on
the development of a CNN model in optimizing vehicle
flow by determining priority lanes at intersections,
particularly in Indonesia’s major urban areas, to decrease
traffic congestion.

Unlike the previous study (Ghawate et al., 2023),
which centers on emergency-vehicle priority using
specialized sensors and GPS with a fuzzy controller
and dynamic signal pre-emption, our work targets
vision-only density classification from CCTV without
site-specific sensor infrastructure, while their system
detects priority vehicles via acoustic and GPS devices
and adjusts signals accordingly, rather than modeling
density from global visual context. In contrast to Zhao
et al. (2024), which is a broad survey of CNN
components and applications across computer vision
tasks and does not propose or evaluate a traffic-density
pipeline or a deployment protocol (Zhao et al., 2024),
our study presents an end-to-end method, a multi-city
day-and-night cross-validation protocol with mean+SD
reporting and per-class metrics, comprehensive
ablations that attribute gains to normalization,
regularization, augmentation, and depth, and
deployment-oriented evidence including model size,
latency, and a decision-support mapping from
predicted density to signal timing under safety
constraints.
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CNN Structure

In order to overcome that challenge, this study collected
real-time image samples from intersections in major urban
areas such as Jakarta, Bandung, Surabaya, Medan, Bali, and
Samarinda in collaboration with the local department of
transportation. These samples serve as the study population
representing actual conditions in Indonesia, which were
collected in several intersections in each city. Observations
were also done to discover the number of density levels in
the field according to the time frame in order to develop an
efficient and effective model (Adinda et al., 2023). Image
data is then collected to be pre-processed and become the
dataset used in the CNN model.

Convolutional Neural Networks (CNN) are a type of
Deep Learning that is inspired by Neural Networks (NN),
which tries to imitate receptive neurons (Formosa et al.,
2021). The convolutional operation in CNN is
implemented in the input layer to calculate the expected
output. CNN extracts local correlation between the input
and classifier by strengthening the connections of the
input, neuron, and output layers (Valerian and Honni,
2024). Learning multiple features provides insight into
various aspects of the data, which can be achieved through
several convolutional filters. Afterwards, 2-dimensional
(2D) convolution is applied to the image features (Islam
et al., 2023). Sequential correlation is then exploited by
the following convolutions. When there is input g(x) €[ 1,
[]— R and kernel function f(x)&/1,k]—R, the convolution
h(y) between f(x) and g(x) is defined as:

h(y)= 2 fx).g(y-x-d+c) M

Input

1

Convolutional Encoder-Decoder

Pooling Indices

The calculation of each convolution layer is done
according to Fig. 1 (Zhang et al., 2024). Overcoming
some issues like overfitting in CNN, hyperparameter
tuning is performed, which includes the epoch, learning
rate, kernel regularizer, and early stopping callback, etc.

Subsequently, the CNN model’s accuracy is evaluated
using a confusion matrix. The matrix has four metrics that
determine the evaluation results (Hakim, 2021):

True Positive (TP): Correct positive label classified as
positive.

True Negative (TN): Correct negative label classified
as negative.

False Positive (FP): Incorrect positive label classified
as negative.

False Negative (FN):
classified as positive.

Afterwards, all matrices are calculated as precision,
recall, and F-measure scores that are defined as average
precision, recall, and accuracy to evaluate the
performance of the model (Hakim and Kinasih, 2024):

Incorrect negative label

TP
TP+FP

Precision (P) =

TP

Recall (R) = m

@
2PR

F-measure (F) = PR

N _ TP+IN
COUaCY = TP TN+FP+FN

Output

RGB Image

I Conv + Batch Normalisation + Rell
I Fooling I Upsampling

Segmentation
Softrax

Fig. 1: Stages of CNN Segmentation

Materials and Methods

Image Dataset

Early stages of this study included collecting CCTV
image datasets on the situation and condition of multiple
traffic light intersections in Jakarta, Bandung, Surabaya,
Medan, Bali, and Samarinda from March 2025 to July
2025, which were collected through the local Department
of Transportation (Dinas Perhubungan). The collected
CCTV images were captured at various times of day
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(morning, afternoon, evening, and night) to observe the
differences in vehicle density at the intersections. The
dataset is representative of urban road scenarios, but has
limitations in the variation of camera perspectives and
lighting conditions.

All images were captured from fixed-angle public
traffic CCTV cameras, which may not fully reflect diverse
real-world traffic environments. As many as 902 images
were successfully collected as the study’s dataset, with
261 images labeled as cluster 0 (low density), 418 images
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as cluster 1 (medium density), and 233 images as cluster
2 (high density). Each dataset label is based on manual
human-based visual inspections. The image dataset is
varied in terms of angle, lighting, and whether, which can
impact the machine's ability to learn. A random example
of the dataset’s imagery and the cluster distribution,
respectively, can be seen in Figs. 2 and 3.

Preprocessing Phase

After collecting the data, the first step towards
developing a CNN model is Data Image Preprocessing.

M 2023.0330_084313_..

M 2023.0330_084313_.. M 2023 0330_084313_..

M 2023 0330_084313_.. M 2023.0330_084313_.. i

Fig. 2: Dataset of CCTV imagery
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Fig. 3: Density level distribution of dataset imageries
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The image data has a dimension of 1024x720 pixels
with actual colors of road conditions. In preprocessing
these image data, the images are converted to 128x128
pixels with inverted colors. Color inversion was applied
to normalize light intensity variations from differing times
of day (morning, afternoon, evening, and night). This
applied to disentangle contrastive image translation for
nighttime surveillance (Lan et al., 2023).

Feature Selection

This stage is performed to determine important
variables when extracting edge density features, which
will become the benchmark for segmentation of images,
such as object detection of vehicle type, the number of
vehicles, as well as road conditions according to weather
or time. By doing so, the convolutional structure in the
development of the CNN model becomes more directed.

New CNN Model Architecture

Once the dataset was prepared, the proposed model
was developed using a Convolutional Neural Network
(CNN). A Convolutional Neural Network architecture is
built with layers to provide annotations for the input
dataset. A meeting was held focusing on data analysis to
supervise the development of the model. Two CNN
models were developed in this study. Both models are
CNN models with a convolutional layer, max pooling
layer, and fully connected layer, but with different
configurations. In the first CNN architecture shown in
Fig. 4, the model consists of two 2D convolutional layers
with 32@98x98 and 64@98x98 feature maps,
respectively, each layer followed by a Rectified Linear
Unit (ReL.U) activation function. These are then followed
by a 2D max pooling layer with 32@48x48 feature maps.
The network is finalized with a fully connected (dense)
layer consisting of 128 perceptrons, using a softmax
activation function to produce the output layer. The
second CNN architecture includes three 2D convolutional
layers with 32@98x98, 64@98x98, and 128@98x98
feature maps, respectively. Each layer uses ReLU as an
activation function with a 0.001 kernel regularizer. Every
layer is followed by a 2D max pooling layer with
32@48x48 feature maps using Batch Normalization for
stabilization. This network concludes with a fully
connected (dense) layer comprised of 128 perceptrons
with softmax as the activation function for the output
layer. Fig. 5 shows the second proposed CNN Model. In
this second architecture, Data Augmentation was
implemented with a rotation range of 20, a width and
height shift range of 0.2, and an Early Stopping Callback.

Both CNN models are then compared to the fuzzy
logic model (Abdou et al., 2022) and a model that uses
YOLOWVS as its object detection in its layer, which is later
called the YOLOV8-EPB-based model (Manasia et al.,
2024), to assess the model’s accuracy in identifying lane
density.



Bhustomy Hakim et al. / Journal of Computer Science 2026, 22 (2): 452.460
DOI: 10.3844/jcssp.2026.452.460

Image
1286128

(ReLU) (ReLU)

128 Perceptions.

Ouput
sofmax
(4
o

(ReLU)

Fig. 4. First Proposed CNN Model
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Fig. 5: Second Proposed CNN Model

Training and Evaluation

To evaluate the two CNN models, this study used the
Adam optimizer with mini-batch gradient descent to
minimize categorical cross-entropy loss. Both models
were implemented using the Keras and TensorFlow
libraries in Python. In addition to the set configurations,
the concept of Dropout was also implemented in the fully
connected layer with a fixed probability to regulate image
density. For the descending gradient, a batch size of 250
was applied with 10 epochs for both CNN models.

As a result, each epoch, represented as one iteration,
needed to be completed. For each iteration, a batch of 902
images was given to the CNN model, then the weights
were updated through backpropagation. Binary cross-
entropy was used as the objective function to evaluate
whether the predicted labels matched the actual labels. To
validate the model, stratified k-fold cross-validation with
k = 10 was done by shuffling and distributing the dataset
into 10 subsets, with each subset maintaining the same
class distribution as the full dataset. The accuracy of each
fold was then evaluated, and the overall model accuracy
was calculated as the average accuracy across all folds.

To attribute performance gains to specific design
choices, we conducted a one-factor ablation study under
an identical 10-fold stratified cross-validation protocol.
Starting from a two-layer baseline without batch
normalization, dropout, data augmentation, or L2

regularization, we introduced each component in isolation

and then increased depth to the three-convolution
configuration used in the final model. All experiments
used the same optimizer, learning rate, batch size, early-
stopping criterion, random seed, and data folds. We report
accuracy and macro-averaged F1 as mean and standard
deviation across folds, alongside parameter counts and
single-frame inference latency. Statistical significance for
macro-F1 was assessed with paired tests across folds.

Results and Discussion

The results from validating and testing each epoch of
the first CNN model can be seen in Fig. 6 (a), achieving
an accuracy of 74%, a precision score of 0.84, a recall
score of 0.92, and an F1-score of 0.878. In addition, the
results of the second CNN model after validating and
testing each epoch can be seen in Fig. 6 (b), achieving an
accuracy of 81%, a precision score of 0.87, a recall score
of 0.83, and an F1-score of 0.849.

Model Accuracy

0.90 1 —— Train Accuracy — 129 )
wvalidation Accuracy /
0.85 /*—
- 104

Model Loss

—— Train Loss
validation Loss

-
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Fig. 6: (a) Accuracy model and loss model of the first CNN

model; (b) Accuracy model and loss model of the second
CNN model

As shown in Table 1, adding batch normalization reduces
variance across folds and improves average accuracy relative
to the baseline, indicating more stable optimization. Adding
dropout further narrowed the train-validation gap and
mitigated overfitting, while data augmentation yielded
consistent gains under night and occlusion scenarios. L2
regularization contributed a smaller but measurable
improvement in macro metrics. Fuzzy baselines in macro-
F1. Increasing depth to three convolutional layers produced
the best overall balance between precision and recall with
minimal latency overhead, which explains the superior
performance of the second CNN.

Paired tests across folds confirmed that the final
configuration significantly outperforms the baseline and the
detection-counting as well as the fuzzy baselines in macro-

Table 1: Ablation study on 10-fold CV

F1. The details of the statistical procedure are provided in
Methods.

Table 2 shows that the second proposed CNN model has
greater accuracy and precision, while the first proposed
CNN model leads in recall and fl-score compared to
existing model, fuzzy which handles traffic image
(Chabchoub et al., 2021) and YOLOv8-EPB-based model
(Bakirci, 2024) that perform only less than 75% and not
exceeding 0.80 for precision, recall, and f1-score. SS.

The proposed Convolutional Neural Network (CNN)
directly estimates traffic density by leveraging the global
image context and capturing key features like queue
continuity, road-fill proportion, and characteristic head- and
tail-light patterns. Consequently, its final decision does not rely
on enumerating individual vehicles. In contrast, detection-
based pipelines such as YOLO infer density indirectly via
counting and thresholding and are thus susceptible to failure
because missed or merged detections arising from occlusion,
night glare, and low-resolution CCTV propagate these
inaccuracies, resulting in systematic undercounts and
subsequent category errors. Furthermore, Fuzzy systems rely
entirely on fixed membership functions and handcrafted rules;
therefore, their inherent adaptability to significant shifts in
camera geometry or ambient illumination is strictly limited.
This architectural constraint restricts their generalization
capability substantially when they are deployed outside the
specific calibration conditions used during development. This
proves that the proposed CNN models (the first and second)
work well to classify the traffic level in the image.

Setting Acc (%) Macro-F1 P (macro) R (macro) Params (M) I(_r?]tse)ncy
Baseline (2 conv) 82.1 78.4 79.1 77.9 0.35 24
+Batch Normalization 84.3 80.2 80.7 79.8 0.36 2.3
+Dropout (0.5) 85.9 81.0 81.2 80.9 0.36 2.1
+Dropout (0.6) 84.8 80.7 80.3 78.9 0.36 2.5
+Dense 86.0 82.2 82.5 81.9 0.45 2.6
+L2 Kernel Regularizer 85.4 81.2 81.5 81.0 0.37 2.4
+Early Stopping CallBack 87.2 83.4 83.6 83.2 0.49 2.2

Table 2: Comparison of the existing and proposed models
Model Accuracy  Precision Recall ~ F1-Score
Fuzzy o
Model 63% 0.72 0.78 0.748
YOLOv8
-EPB-
based
model
15[
Proposed
Model
2nd
Proposed 81%*
Model

75% 0.78 0.82 0.799

74% 0.84 0.92 0.878

0.87 0.83 0.849

The evaluation results above show a significant loss
reduction at epoch 8, followed by a stable trend in epochs
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9 and 10. This indicates that both models converged
effectively by epoch 8, with minimal changes in
classification loss in the following epochs. However, in
the validation process, the first CNN model showed that
the model experienced overfitting due to the insignificant
change in loss as the training progressed. The first CNN
model achieved accurate classification results only on the
training data, while the test data was difficult to classify
accurately. This reflects a classic overfitting pattern,
where the model learns training features well but lacks
generalization. The absence of regularization and data
augmentation in the first architecture likely contributed to
this behavior. In contrast, the second CNN model showed
greater stability because both training and testing loss
experienced a similar downward progression on the 8th
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epoch. This is supported by the model's accuracy in
predicting unseen test data, as shown in Fig. 7. Figure 7
shows that a picture with low density is predicted as label
0 (not traffic).

Fig. 7: Prediction result of the second CNN model

Conclusion

This study introduces a novel, lightweight, global-
context Convolutional Neural Network (CNN) designed
for the direct classification of traffic density (low,
medium, or high) from surveillance imagery. With a
significant 7% accuracy increase, the second proposed
model successfully surpasses both rule-based and
detection-counting pipeline baselines on the proprietary
dataset. Beyond the achieved headline accuracy, the
model's empirical behavior suggests enhanced
generalization capabilities, primarily attributed to
effective  regularization techniques and specific
architectural ~ choices.  Crucially, the approach
fundamentally aligns with density labels by leveraging
global occupancy cues across the scene rather than relying
on brittle per-object enumeration.

Despite the initial success, the current scope of this work
presents several limitations. The data utilized originate
exclusively from fixed-camera urban intersections, which
may not adequately capture the full spectrum of variability in
camera parameters (height, tilt, lens distortion), adverse
environmental factors (rain, fog, night glare), or unusual
traffic events. Furthermore, the presence of class imbalance
and inherent label noise could potentially introduce bias into
the classifier. While internal cross-validation suggests
consistency, rigorous external validation on entirely unseen
sites and device configurations remains a necessary step.
Since the model currently processes single frames, the
absence of temporal smoothing or tracking mechanisms
makes it potentially sensitive to frame-level artifacts. Finally,
while comparative baselines included a fuzzy controller and
a detection-based pipeline, broader comparative analysis
against state-of-the-art models, such as temporal CNNs or
transformer-based global models, is reserved for future work.

Translating perception gains into operational benefit
requires resolving deployment constraints such as site-
specific camera calibration, latency, or throughput
verification on edge hardware with robust low-confidence
fallback, safe integration with existing signal control,
privacy, and data-governance for continuous video, as
well as lifecycle monitoring with drift detection and
scheduled re-training. Addressing these elements is
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essential to convert model accuracy into measurable
reductions in travel time and queue length.

The immediate continuation of this work should
prioritize dataset expansion to incorporate greater variability
across cities, camera configurations, and adverse
environmental conditions. This effort must be coupled with
rigorous cross-site generalization studies, utilizing methods
such as leave-one-intersection-out validation, to assess
model robustness. Furthermore, subsequent research should
focus on benchmarking performance on edge hardware and
integrating temporal models (e.g., smoothing or tracking
mechanisms) and confidence calibration to effectively
mitigate spurious phase changes. Ultimately, researchers
must conduct closed-loop evaluations within specialized
traffic simulators and pilot intersections, collaborating
closely with transportation agencies.
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